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Abstract
In this paper new symmetry reductions and exact solutions are found for
the one-dimensional quantum drift–diffusion model for semiconductors based
on the Bohm potential. The symmetry reductions are derived by using the
nonclassical method developed by Bluman and Cole. Further reductions are
obtained by means of other types of symmetry reductions or by ansatz-based
reductions. In particular, several types of exact solutions are derived: kinks, k-
hump compactons and elliptic traveling waves. The new solutions can display
several types of coherent structures.

PACS numbers: 02.30.Jr, 02.20.Sv

1. Introduction

Classical drift–diffusion and energy transport models describe the transport of charged species
in strong interaction with a surrounding medium. Such situations occur in semiconductors
(where electrons and holes are interacting with the crystal impurities) or in cold plasma or
gas discharges (where the electrons and ions are interacting with the surrounding neutral
molecules). Nowadays, quantum effects play an important role in semiconductor devices.
The ongoing progress of industrial semiconductor device technologies permits us to fabricate
devices which inherently employ quantum phenomena in their operation, e.g. resonant
tunneling diodes, quantum well laser, etc. Some device architectures are based in ultra
thin body silicon-on-insulator FETs where a structural confinement of the carrier gas is taking
place in one or two dimensions.

A proper description of the device electrostatic and current transport requires quantum
effects to be accounted for. The widely used drift–diffusion equation introduced by van
Roosbroeck [22] in 1950 is not capable of taking these quantum effects into account properly.
Several finer levels of modeling have been used: Schrödinger or collisional Wigner equation,
hybrid models. The last ones use a quantum model in regions where the quantum effects
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take place and couple this model by proper interface condition (e.g. continuity of the electron
and current densities) to a classical drift–diffusion or hydrodynamic model in the reminder.
This approach is referred to as quantum drift–diffusion. A simplified version of it, which
replaces the Schrödinger equation by a nonlinear equation in the electron-charge distribution,
is sometimes called density–gradient models. Continuum models for the description of charge
carrier transport in semiconductors are of a major interest for applied mathematicians and
engineers, on account of their applications to the design of electron devices. The drift–
diffusion models are also widely used in engineering applications [6, 11, 21]. These models
are obtained by the balance equation for electron density and/or hole density coupled to the
Poisson equation for the electric potential. The classical drift–diffusion models have been
thoroughly investigated from an analytical point of view [7, 8, 11, 15] and several suitable
efficient numerical methods have been developed [4].

Due to the complexity of the model, the quantum drift–diffusion equations are usually
solved numerically. Another approach to solve them analytically has been carried out by
perturbation methods [20]. Recently, in [17], approximate solutions to the quantum drift–
diffusion model for semiconductors have been found with the aid of the symmetry group
analysis performed in [16].

Symmetry group techniques, in general, provide a method for obtaining exact analytical
solutions of partial differential equations (PDEs) and can be used to reduce the number of
dependent and/or independent variables. From a known solution of a differential equation,
and by applying symmetry transformations, several classes of new solutions can be obtained;
in fact, quite often, interesting solutions can be obtained from trivial ones.

The classical method for finding symmetry reductions of PDEs is the Lie group method
of infinitesimal transformations. In this case the associated determining equations are an
overdeterminated linear system of equations [3, 12, 13]. Motivated by the fact that there
are symmetry reductions of PDEs that cannot be obtained by using the classical Lie group
method, several generalizations of this method have been developed. Bluman and Cole [2]
introduced the nonclassical method to study the heat equation. One can show that all the
classical symmetry are also nonclassical ones because they satisfy the invariance surface
conditions. For the nonclassical method, the determining system is usually highly nonlinear,
so a complete analysis of the nonclassical symmetries can rarely be done. The method of
nonclassical reduction has been used to find new exact solutions of many nonlinear partial
differential equations of physical or mathematical relevance (e.g. [9, 5, 14]).

If we are able to find a solution of the determining equations then we obtain the explicit
form of a vector field Y, which is named as a nonclassical symmetry operator. In general,
the corresponding local point transformations do not leave the system invariant; i.e. they will
not transform solutions amongst each other, but transform solutions which satisfy invariance
surface conditions into solutions verifying the same conditions.

For several classes of PDE, the search of soliton-like solutions has raised a great interest
during the last two decades. Solitons are analytical solutions that are exponentially localized
in the space, but, in general, they are not null out of any bounded set. By weakening the
regularity conditions and by strengthening the conditions of localization, the compactons
were introduced [10, 19]. The functions in this class are null out of some bounded spatial set
but may be not analytical at some points.

For nonlinear PDE whose coefficients vanish at some points, as is our drift–diffusion
model, the existence and relevance of non-analytical solutions have been considered by several
authors. However, some of these authors do not always use the same definitions to deal with
compactons. The main differences appear with the behavior of the possible solutions at the
singularities of the equation. In this paper we understand that a compacton is a function that
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has enough continuous derivatives in order for this function to satisfy the PDE in all points
[18]. Of course, at the singularities the hypothesis of the Cauchy–Kovalevsky theorem is not
satisfied.

This paper is organized as follows. At the beginning, in section 2, we describe the quantum
drift–diffusion model. In section 3, by applying the infinitesimal method, we obtain some
nonclassical symmetries for the quantum drift–diffusion model of semiconductors in the one-
dimensional case, and, after the corresponding symmetry reductions, we obtain several classes
of particular solutions. In section 4 we study some qualitative aspects of the classes of solutions
that we have found: kinks, kink–antiking structures, periodic nets of dromions–antidromions,
compactons, etc.

2. The quantum drift–diffusion model

When the dimensions of submicron semiconductor devices are shrunk, the quantum effects are
no longer negligible and a way to include them is based on the Bohm potential. The resulting
quantum drift–diffusion model [8] is given in the unipolar case by the system

∂n

∂t
+ ∇ · J = 0, (1)

λ2�� = n − c(x), (2)

where n is the electron density, J is the electron momentum density, λ2 is the dielectric
constant divided by the elementary charge e, � is the electric potential and c(x) is the doping
concentration as a function of the position x. As usual, ∇ denotes the divergence operator and
� is the Laplacian with respect to spatial variables.

The constitutive relation for the momentum density J is expressed as the sum of a diffusion,
a drift and a quantum term

J = −K ∇(nα) + μn (∇� + ∇Q), (3)

where K is the diffusion coefficient, μ is the mobility and Q is the Bohm quantum correction.
This correction Q can be expressed as

Q = H0
�

√
n√

n
, (4)

where H0 = h̄

2m∗ e
, h̄ being the reduced Planck constant and m∗ the effective electron mass.

The constant α must satisfy the condition α � 1. The limit case α = 1 is the quantum
analogous of the isothermal flow, which is the basic assumption in the classical drift–diffusion
models.

As usual, we assume that K and μ are related by the Einstein relation

K = U0μ, (5)

where U0 = kBTL

e
is the constant thermal potential, kB being the Boltzmann constant and TL

the lattice temperature attained at equilibrium.
The mobility μ is considered to be a function of the modulus |E| of the electric field

E = −∇�; i.e.

μ = μ(|E|). (6)

From the mathematical point of view, this kind of model can be considered as a fourth-
order parabolic equation coupled by an elliptic equation. In the one-dimensional case the
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Poisson equation can be rewritten as follows. Since n � 0, we will use a new variable w so
that w2 = n. Then, the system in the dependent variables w and E becomes

S1 ≡ ∂w2

∂t
+

∂

∂x

(
−μU0

∂w2α

∂x
− μw2 E + μH0

(
w

∂3w

∂x3
− ∂2w

∂x2

∂w

∂x

))
= 0, (7)

S2 ≡ λ2 ∂E

∂x
+ w2 − c(x) = 0. (8)

From now on, we consider μ depending on E and, to consider solutions with physical relevance,
when μ is nonconstant we must require that E is either positive or negative.

3. Nonclassical symmetries and exact solutions

In order to obtain new solutions of system (7)–(8), we apply the nonclassical method of
reduction. We consider a one-parameter Lie group of infinitesimal transformations of the
form

Y = ξ(t, x,w,E)
∂

∂x
+ τ(t, x,w,E)

∂

∂t
+ η1(t, x,w,E)

∂

∂w
+ η2(t, x,w,E)

∂

∂E
. (9)

We require that (9) leaves invariant equations (7) and (8) and the invariance surface
conditions

ξwx + τwt − η1 = 0, ξEx + τEt − η2 = 0, (10)

where the subscripts t and x represent the partial derivatives with respect to t and x, respectively.
This leads to a complicated nonlinear system of determining equations for the functions

ξ(t, x,w,E), τ(t, x,w,E), η1(t, x,w,E) and η2(t, x,w,E).
In order to analyze the set of determining equations, we will consider two cases: τ �= 0

and τ = 0.

3.1. Case 1. τ = 0

When τ = 0, without loss of generality, we can assume that ξ(t, x,w,E) = 1. In this case
the invariant surface conditions (10) reduce to

wx = η1, (11)

Ex = η2. (12)

By (12), equation (8) becomes a non differential equation:

η2 = c(x) − w2

λ2
, (13)

and system (7)–(8) is reduced to a single equation. In this case, the symmetry operator adopts
the following form:

Y = ∂

∂x
+ η1(t, x,w,E)

∂

∂w
+

c(x) − w2

λ2

∂

∂E
, (14)

where the coordinate η1 must satisfy a complicated nonlinear partial differential equation. We
are able to obtain only some particular solutions and the corresponding symmetry reductions.
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Symmetry reduction 1.1. For α �= 1, c(x) arbitrary and μ(E) = μ0

E
, with μ0 a constitutive

constant, we have

η1 = ±
√

U0

(α − 1)H0
wα. (15)

In this case, in order to obtain the similarity variables associated with generator (14), we set

β =
√

(α−1)U0
H0

and we distinguish two subcases.

(1) If α = 3, the new variables are y = t, w = [−βx + u(y)]−1/2 ,

E = v(y) +
A(x)

λ2
+

ln (−βx + u)

λ2β
. (16)

(2) If α �= 3, the new variables are y = t, w = [−βx + u(y)]1/(1−α) ,

E = v(y) +
A(x)

λ2
+

(1 − α) [−βx + u]
3−α
1−α

(3 − α)λ2β
. (17)

In both cases v(y) is an arbitrary function, the functions A(x), u(y) must satisfy

A′(x) = c(x); u′ = −μ0

√
(α − 1)U0

H0
. (18)

By solving (18) we get u = −μ0

√
(α−1)U0

H0
y + a1, where a1 is an arbitrary constant.

The corresponding solutions of system (7)–(8) are given by w = [−β(x + μ0t) + a1]
1

1−α

and

(1) if α = 3,

E = v(t) +
A(x)

λ2
+

ln (−β(x + μ0t) + a1)

λ2β
; (19)

(2) if α �= 3,

E = v(t) +
A(x)

λ2
+

1 − α

(3 − α)λ2β
[−β(x + μ0t) + a1]

3−α
1−α ; (20)

where β =
√

(α−1)U0
H0

.

Symmetry reduction 1.2. For α = 2, c(x) = c0 e
∓ x

λ
√

2U0 and μ(E) = μ0, with c0 and μ0

constitutive constants, we get

η1 = ± w

2λ
√

2U0
. (21)

In this case the new variables are

y = t, w = u(y) e
±x

2λ
√

2U0 , E = v(y) ∓
√

2U0

λ

(
e
± x

λ
√

2U0 u(y)2 + c0 e
∓ x

λ
√

2U0
)
, (22)

where u, v must satisfy the equation

μ0 u v ∓ 2λ
√

2U0u
′ = 0. (23)

When u(t) is arbitrary, the corresponding solution of system (7)–(8) is

w = u(t) e
±x

2λ
√

2U0 ,

E = ±2λ
√

2U0 u′(t)
μ0 u(t)

∓
√

2U0

λ
e
± x

λ
√

2U0
(
u(t)2 + c0 e

∓ 2x

λ
√

2U0
)
.

(24)
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Symmetry reduction 1.3. For α = 3/2, c(x) arbitrary and μ(E) = μ0

3μ1U0+E
, with μ0 and μ1

constitutive constants, we have

η1 = μ1. (25)

The new variables are

y = t, w = μ1x + u(y), E = v(y) − (u(y) + μ1x)3

3μ1λ2
+

A(x)

λ2
, (26)

where A′(x) = c(x), u(y) must satisfy the equation μ0μ1 − u′ = 0 and v(y) is arbitrary.
In this case we obtain the following solution of system (7)–(8):

w = μ1(x + μ0t) + a1, E = v(t) − (μ1(x + μ0t) + a1)
3

3μ1λ2
+

A(x)

λ2
, (27)

where a1 is an arbitrary constant and v(t) is an arbitrary function.

Symmetry reduction 1.4. For α = 1, c(x) arbitrary and μ(E) = μ0

2μ1U0+E
, with μ0 and μ1

constitutive constants, we have

η1 = μ1w. (28)

The new variables are

y = t, w = u(y) eμ1x, E = v(y) − u2(y) e2μ1x

2μ1λ2
+

A(x)

λ2
, (29)

where A′(x) = c(x).
In this case the function v is arbitrary and u must satisfy the equation μ0μ1u − u′ = 0.
The corresponding solution of system (7)–(8) is

w = eμ1(x+μ0t)+a1 , E = v(t) − e2(μ1(x+μ0t)+a1)

2μ1λ2
+

A(x)

λ2
, (30)

where a1 is an arbitrary constant and v(t) is an arbitrary function.

Symmetry reduction 1.5. For α = 1/2, c(x) arbitrary and μ(E) = μ0

E
, with μ0 a constitutive

constant, we have

η1 = −U0

H0
(x + μ0t) + a1, (31)

where a1 is an arbitrary constant.
The new variables are y = t, w = − U0

2H0
x2 − (

U0μ0

H0
t − a1

)
x + u(y),

E = v(y) +
A(x)

λ2
− 1

4H 2
0 λ2

[
U 2

0 x5

5
+ β(U0x

4 − 4H0u(y)x2)

+
4

3
(β2 − H0U0u(y))x3 + 4H 2

0 u2(y)x

]
,

where A′(x) = c(x), β = β(t) = μ0U0 t − a1H0, v(y) is an arbitrary function and u(y) must
satisfy the equation

−μ0a1H0 + μ2
0U0y + H0u

′ = 0. (32)

The solution of (32) is given by

u(y) = μ0a1y − μ2
0U0y

2

2H0
+ a2, (33)

6
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where a2 is an arbitrary constant. To simplify the final result for E, we set a2 = −H 2
0 a2

1 +k1

2U0H0
, so

k1 is an arbitrary constant, and the corresponding solution of system (7)–(8) is

w = − U0

2H0
(x + μ0t)

2 + a1(x + μ0t) +
−H 2

0 a2
1 + k1

2U0H0
,

E = v(t) +
A(x)

λ2
− 1

4H 2
0 λ2

[
U 2

0

5
x5 + U0βx4 +

2

3
(3β2 − k1)x

3

+
2β

U0
(β2 − k1)x

2 +
1

U 2
0

(β2 − k1)
2x

]
.

(34)

3.2. Case 2. τ �= 0

When τ �= 0, we may set, without loss of generality, τ(t, x,w,E) = 1. We will apply the
classical Lie algorithm to system (7)–(8), where we have eliminated wt and Et by using (10).

The corresponding determining system leads to the following symmetry operators
depending on α, the mobility μ and the doping concentration c:

(1) For α, μ and c arbitrary,

Y = ∂

∂t
. (35)

(2) For α arbitrary, c = c0 and μ = μ0 �= 0, with c0 and μ0 constitutive constants,

Y = f (t)
∂

∂x
+

∂

∂t
− f ′(t)

μ0

∂

∂E
, (36)

where f (t) is an arbitrary function.
(3) For α and μ arbitrary, while c = c0, with c0 a constitutive constant,

Y = a1
∂

∂x
+

∂

∂t
, (37)

where a1 is an arbitrary constant.

(4) For α = 3/2, c = c0
(x+c1)4 and μ = μ0E

μ1−4
3 , with c0, c1, μ0 and μ1 constitutive constants,

Y = x + c1

μ1t + a1

∂

∂x
+

∂

∂t
+

−2w

μ1t + a1

∂

∂w
+

−3E

μ1t + a1

∂

∂E
, (38)

where a1 is an arbitrary constant.

Let us observe that these symmetries are the classical ones found in [17].

Symmetry reduction 2.1. When c, α and μ are arbitrary the new variables for the symmetry
operator (35) are of the form y = x, w = u(y), E = v(y). In this case the solutions we are
able to find are stationary ones and system (7)–(8) reduces to the following system for the
unknown u(y) and v(y)

(2αU0u
2α−1u′ + u2v + H0(u

′u′′ − uu′′′))μ = k1, −c + u2 + λ2v′ = 0, (39)

where k1 is an arbitrary integration constant. We can obtain an ODE for v by solving the
second equation in u and by substituting in the first equation.

For some special forms of c and μ, we are able to obtain particular solutions of system
(39), and then of system (7)–(8).

7
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(1) Trigonometric solutions
If c(x) = cos2(x + a1) + 2λ2U0 cos−2(x + a1) with a1 a constitutive constant, α = 1 and μ

arbitrary, by setting k1 = 0 in (39) we obtain the following solution for the drift–diffusion
system:

w = cos(x + a1), E = 2U0 tan(x + a1). (40)

Since the derivatives of the trigonometric functions can be expressed in terms of the sine
and cosine functions it is also possible to find solutions of the form w = sinn(x +a1), E =
sink(x + a1), for n, k ∈ N by adequately choosing μ and c(x). Of course μ can become
complicated if n, k are big numbers, for instance

• If c(x) = sin2(x + a1) + λ2 sin(2x + a1) and μ(E) = k1

E2+2αU0Eα−1/2
√

1−E
, with k1 and

a1 constitutive constants, a solution of system (7)–(8) is

w = sin(x + a1), E = sin2(x + a1). (41)

• If c(x) = sin2(x + a1) + λ2 cos(x + a1) and μ(E) = k1

E3+2αU0

√
1−E2 E2α−1 , with k1 and

a1 constitutive constants, we obtain

w = sin(x + a1), E = sin(x + a1). (42)

• If c(x) = sin4(x + a1) + λ2 sin(2(x + a1)) and μ(E) = k1

E3+4αU0

√
E−E2 E2α−1+4H0

√
E−E2 ,

with k1 and a1 constitutive constants, we obtain the solution

w = sin2(x + a1), E = sin2(x + a1). (43)

(2) Hyperbolic solutions

• When α = 2, μ arbitrary and c = c0 with c0 a constitutive constant, by choosing
k1 = 0 in system (39) we obtain the following solution:

w = ±
√

2c0 cosh

(
x + a1

2λ
√

2U0

)
, E = −c0

√
2U0

λ
sinh

(
x + a1

λ
√

2U0

)
, (44)

where a1 is an arbitrary constant.
• For c(x) = sinh2(x + a1) + λ2 sinh(x + a1) and μ(E) = k1

E(E2−1+2U0α(E2−1)α−1/2)
, with

k1 and a1 constitutive constants, we obtain

w = sinh(x + a1), E = cosh(x + a1). (45)

• For c(x) = a1ex(λ2 + a1ex) and μ(E) = k1
E3+2αU0E2α , with k1 and a1 constitutive

constants, we get

w = E = a1 ex. (46)

(3) Jacobian elliptic solutions
In some particular cases we are able to obtain cnoidal waves u(x) as solutions of (39).

• For c(x) = cn4(x + a1,m) + λ2cn(x + a1,m)dn(x + a1,m) and

μ(E) = k1E
−1[(1 − E2)2 − 4

√
(1 − E2)(1 − mE2)(H0(1 + m(3E4 − 6E2 + 2))

+ αU0(1 − E2)2α−1)]−1,

with a1 and m constitutive constants, we obtain the solution

w = cn2(x + a1,m), E = sn(x + a1,m), (47)

where sn, cn, dn are the Jacobi elliptic functions [1] of parameter m.
• For c(x) = cn4(x + a1,m) − 2λ2sn(x + a1,m)cn(x + a1,m)dn(x + a1,m) and

μ(E) = k1

E3 − 4
√

E(1 − E)(1 + m(E − 1))(H0(1 + m(3E2 − 1)) + αU0E2α−1)
,

with a1 and m constitutive constants, we obtain

w = cn2(x + a1,m), E = cn2(x + a1,m). (48)

8
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Taking into account that sn(z, 0) = sin(z), cn(z, 0) = cos(z), sn(z, 1) = tanh(z) and
cn(z, 1) = dn(z, 1) = cosh−1(z), the solutions (47) and (48) also give trigonometric and
hyperbolic solutions of the system (7)–(8).

(4) Solutions in Wadati functions

The Wadati functions are functions of the form W = d
dx

(
2 arctan

(
n1 sin(n2x)

n2 cosh(n1x)

))
, where

n1, n2 are Gaussian integers, i.e. complex numbers whose real and imaginary parts are
integer. Since these functions can be written in terms of trigonometric or hyperbolic
functions, some algebraic relations between the functions and their derivatives could be
investigated. So, we will try to find some specific forms of c and μ for which we obtain
solutions in Wadati functions. In the following special cases we obtain solutions of system
(7)–(8):

• For

c(x) = 36

(
3 − 2 cosh(2x)

3 cosh(x) − 4 cosh(3x)

)2

+ λ2 sinh(x),

a complicated expression μ(E) can be obtained for which we have the following
solution:

w = 8 cosh(x)

8 cosh(2x) − 7
− 2 sech(x), E = cosh(x), (49)

where w is a Wadati function with n1 = 3, n2 = 2i.
• For

c(x) = 144

(
2 cosh(2x) + cosh(4x)

8 + 9 cosh(2x) + cosh(6x)

)2

+ 2λ2 sinh(2x),

a complicated expression μ(E) can be obtained for which we have the following
solution:

w = 12(2 cosh(2x) + cosh(4x))

8 + 9 cosh(2x) + cosh(6x)
, E = cosh(2x), (50)

where w is a Wadati function with n1 = 1, n2 = 3i.

(5) Weierstrass elliptic solutions
When c = c0, with c0 a constitutive constant, we can also find solutions in terms of
Weierstrass elliptic functions P(y, g2, g3). This class of functions satisfies the ODE
(P ′)2 = 4P 3 − g2P − g3. In fact, it is possible to check that here exists a complicated
form for μ(E) such that we have a solution in Weierstrass elliptic functions of (39) and
consequently the following solution of system (7)–(8):

w =
√

c0 − 2λ2P
√

4P 3 − g2P − g3, E = P 2. (51)

Symmetry reduction 2.2. When the mobility and the doping profile are constants, from
the symmetry operator (36) the new variables we obtain are y = x + a(t), w = u(y) and
E = v(y) + a′(t)/μ0, where the functions u and v must satisfy the system

−2αU0u
2α−1u′ − u2v + H0(uu′′′ − u′u′′) = k2, −c0 + u2 + λ2v′ = 0, (52)

k2 being an arbitrary integration constant.
In this case all the solutions w which we are able to find are traveling waves.
The constant solutions are particular solutions of the system (52) and the corresponding

solution E of system (7)–(8) is not constant but it only depends on t:

w = ±√
c0, E = −k2

c0
+ a′(t)/μ0. (53)

9
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By solving the first equation of system (52) in v, derivating and substituting in the second
equation, system (52) can be reduced to a single fourth-order ODE in u. This equation admits
the symmetry operator Z = ∂y and can be reduced to a third-order equation.

If we choose k2 = 0, by setting g′ = v we can write system (52) as
α

1 − α
U0u

2α−1 − ug + H0u
′′ = k3u, (54)

−c0 + u2 + λ2g′′ = 0, (55)

where k3 an arbitrary integration constant. We have found the following particular solutions:

(1) For α arbitrary,

w = 0, E = c0

λ2
(x + a(t)) + c4 +

a′(t)
μ0

, (56)

where a(t) is an arbitrary function.
(2) For α = 2,

u = ±
√

2c0 cosh

(
y

2λ
√

2U0

)
, v = −c0

√
2U0

λ
sinh

(
y

λ
√

2U0

)
(57)

and the corresponding solutions of the drift–diffusion system are

w = ±
√

2c0 cosh

(
x + a(t)

2λ
√

2U0

)
, E = −c0

√
2U0

λ
sinh

(
x + a(t)

λ
√

2U0

)
+

a′(t)
μ0

, (58)

where a(t) is an arbitrary function. We observe that these solutions are a generalization
of (44).

Symmetry reduction 2.3. In this case the doping profile is c0 = constant and the new variables
that correspond to symmetry operator (37) are y = x + a1t, w = u(y) and E = v(y), where
the functions u and v are solutions of the system

u2a1 − 2μαU0u
2α−1u′ − μu2v + μH0(uu′′′ − u′u′′) = k2, −c0 + u2 + λ2v′ = 0 (59)

and k2 is an arbitrary integration constant.
The solutions that correspond to this reduction are traveling waves.
By solving the second equation in u, differentiating and substituting in the first equation,

system (59) can be reduced to a single fourth-order ODE in v. This equation admits the
symmetry operator Z = ∂v and, by setting z(v) = 1

v′(y)
, can be reduced to a single third-order

equation.
For some particular forms of the mobility we have found the following traveling wave

solutions.

(1) If μ(E) = 2(c0−λ2E)2(−k2+a1(c0−λ2E))

E(2c3
0+c2

0λ
2(H0−6E)+6c0λ4E2−2λ6E3−2αλ2U0(c0−λ2E)1+α)

,

w = ±
√

c0 − λ2ex+a1t , E = ex+a1t . (60)

(2) If μ(E) = λ2(2k2+(
√

1−E2−1)a1)

E(λ2(
√

1−E2−1)−2−ααU0(1−√
1−E2)α−1)

and c0 = 1
2 ,

w = sin

(
x + a1t

4λ2

)
, E = sin

(
x + a1t

2λ2

)
. (61)

10
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(3) If

μ(E) = Eλ2cα+3
0 (−k2c0 + a1λ

4E2)

2αc3
0λ

4αU0E2α
(
c2

0 − λ4E2
)

+ cα
0 λ6E4

(
c3

0 − 4c2
0H0λ2 + 4H0λ6E2

) , (62)

w = √
c0 tanh(x + a1t), E = c0

λ2
tanh(x + a1t). (63)

(4) If μ(E) = cα+3
0 λ2E(a1λ

4E2−c0k2)
λ6E4(4H0E2λ6−4c2

0H0λ2+c3
0)c

α
0 +2αλ4αU0E2α(c2

0−λ4E2)c3
0
,

w = √
c0 coth(x + a1t), E = c0

λ2
coth(x + a1t). (64)

(5) If μ(E) = a1
E

, α = 2, k2 = 0 and y = x + a1t , two classes of solutions can be found:
(a)

w = Asn(γ y,m), E = c0

γ λ2
E(am(γ y,m),m), (65)

where E( · ,m) is the elliptic integral of second kind and parameter m, am is the elliptic
amplitude [1], A2 = c0m and γ 2 = U0

H0
c0.

(b)

w = Acn(γ y,m), E = c0

(1 − m)γλ2
E(am(γ y,m),m), (66)

where A2 = c0
m

m−1 and γ 2 = U0
H0(1−m)

c0.
(6) For k2 = c0a1 a long expression for μ can be found that leads to the following solution:

w =
√

c0 − 2λ2cn(x + a1t, m)dn(x + a1t, m)sn(x + a1t, m),

E = sn2(x + a1t, m).
(67)

Taking into account the properties of the elliptic functions, the solutions (65), (66) and
(67) also lead to trigonometric and hyperbolic traveling wave solutions.

(7) Compactons. Compactons were introduced by Rosenau and Hyman [19] as a class of
solitary wave solutions with compact support. In order to obtain a compacton solution
f (y) for a differential equation, f must be a nonidentically null solution in a compact set
Q, and f must be null when y /∈ Q.

Let us observe that in (59), for k2 = 0 and μ arbitrary, we can obtain the solution
u = 0 and v = c0y

λ2 + k3, with k3 an arbitrary constant.
If m ∈ N, u = A sinm(γ y) for y ∈ [0, kπ/γ ], and u = 0 elsewhere, then u /∈ C∞(R)

but u have a jump discontinuity for the m-order derivative at the points y = 0 and
y = kπ/γ . It can be shown that for m � 4 the corresponding functions u, v are regular
enough to be solutions for system (59), in the classical sense, by choosing an adequate
function μ(|E|).

For instance, we can find a k-hump compacton in the following way.
If γ > 0 and we denote Q = [0, kπ/γ ], k ∈ N, then a solution u, v of (59) is given

by

u =
{

A sin4(γ y), y ∈ Q

0, elsewhere
(68)

and

v =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
c0s

105λ2γ

√
1 − s2(48s6 + 56s4 + 70s2 + 105), y ∈

[
0,

kπ

γ

]
,

c0

λ2

(
y − kπ

γ

)
, y > kπ/γ,

c0

λ2
y, y < 0,

(69)
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where A2 = 128c0
35 and s = sin(γ y), with ε = 1 for y ∈ Q and

∣∣y − 2mπ
γ

∣∣ � π
2γ

for

0 � m �
⌊

k
2

⌋
and ε = −1 elsewhere in Q; where �x� indicates the greatest integer less

than or equal to x.
It can be checked that u ∈ C3(R), v ∈ C8(R) and that u, v define a solution of (59)

with k2 = 0 for y /∈ Q.

For the pair u, v, the mobility μ has the form

μ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 s3

s3 v + ε 8 γ
√

1 − s2
(
3γ 2H0 + αU0A2α−2s8α−6

) , y ∈
]

0,
kπ

γ

[
,

a1

v
, y ∈ Q, y = (2m + 1)π

2γ
,

μ1(v), elsewhere,

(70)

where μ1(v) is an arbitrary function of v. At y = 0 or y = kπ/γ, sin(γ y) = 0, u = 0
and μ = 0 because 8α > 6; therefore, the coefficient of u′′′ in (59) degenerates and the
uniqueness of the solution is lost [18]. The functions u, v are smooth enough in order to
satisfy (59) for y ∈ Q.

Symmetry reduction 2.4. Let us recall that in this case c = c0
(x+c1)4 , μ = μ0E

μ1−4
3 and

α = 3/2. By considering the symmetry operator (38), we must distinguish two cases: μ1 �= 0
and μ1 = 0.

• If μ1 �= 0, the new variables are y = x+c1

(μ1t+a1)
1/μ1

, w = u(y)

(μ1t+a1)
2/μ1

, E = v(y)

(μ1t+a1)
3/μ1

, where
u(y) and v(y) must satisfy the system

u{6v7/3(2u + yu′) + μ0v
μ1/3[6v2u′ + v(18U0u

′2 + u((μ1 − 1)v′ + 9U0u
′′))

+ 3(μ1 − 4)U0uu′v′]} + μ0H0v
μ1/3[(μ1 − 4)v′(u′u′′ − uu′′′)

+ 3v(u′′2 − uu′′′′)] = 0,

−c0 + y4(u2 + λ2v′) = 0.

This system can be reduced to a single, but complicated, ODE.
If μ1 = 3m, m ∈ Z, we have found the following particular solution

u =
9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0

y2
,

v =
6(−2H0 + U0(9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0 ))

y3
.

The corresponding solution of system (7)–(8) is

w =
9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0

(x + c1)2
,

E =
6
( − 2H0 + U0

(
9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0

))
(x + c1)3

.

(71)

We observe that the corresponding solution of the drift–diffusion system becomes a
stationary solution.
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• If μ1 = 0, the new variables are
y = (x + c1)e−t/a1 , w = u(y)e−2t/a1 , E = v(y)e−3t/a1

and the new system is

u(6vu′(a1μ0v + yv4/3 + 3a1μ0U0u
′) + u(12v7/3 − a1μ0(12U0u

′v′ + v(v′ − 9U0u
′′))))

+ a1μ0H0(−4v′(u′u′′ − uu′′′) + 3v(u′′2 − uu′′′′)) = 0, (72)

−c0 + y4(u2 + λ2v′) = 0. (73)

We obtain the solution u = ±√
c0

y2 , v = 0, that gives, as solution of the system (7)–(8),

w = ±√
c0

(x + c1)2
, E = 0. (74)

Another solution of (72)–(73) is given by

u =
9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0

y2
,

v =
6
( − 2H0 + U0

(
9λ2U0 ±

√
c0 − 36H0λ2 + 81λ4U 2

0

))
y3

.

The corresponding solution of (7)–(8) are also given by (71).

4. Qualitative analysis of some solutions

In this section, we study some qualitative aspects of several classes of the exact solutions of
system (7)–(8) that we have found in the previous section. From a physical point of view,
the most interesting solutions are k-hump compactons, kinks, soliton–antisolitons, kinks–
antikinks, periodic solutions, etc. Apart from the physical interest of the solutions we have
displayed in this paper, they can be useful for some applications because they provide examples
of benchmark solutions for testing numerical codes for the quantum drift–diffusion model.

4.1. Solutions that depend on arbitrary functions

(1) When the mobility and the doping profile are constant and α = 2, we have obtained the
solution (58), where a(t) is an arbitrary function. The form of this class of solutions
allows us to obtain solutions with a given behavior as t varies; for instance, by choosing
a(t) periodic we get a periodic solution (58), for a fixed x. We can also choose the
arbitrary function a(t) in such a way that the electric field is bounded for any x.

Let us observe that if the device has length L and it is represented by the set [0, L];
then the electric field satisfies the following boundary condition depending on the arbitrary
function a(t):

E(0, t) = −c0
√

2U0

λ
sinh

(
a(t)

λ
√

2U0

)
+

a′(t)
μ0

. (75)

By integration on the interval [0, L], we get that the bias potential for getting such a
solution is

�bias(t) = �(L, t) − �(0, t) = 2c0U0

(
cosh

(
L + a(t)

λ
√

2U0

)

− cosh

(
a(t)

λ
√

2U0

))
− L

a′(t)
μ0

. (76)
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Figure 1. Representation of the stationary solution given by (47), with m = 1 and a1 = 0 (graphics
(a) and (b)). In graphics (c), the Wadati function w given in (50) is plotted.

If in (58) we choose a(t) = constant, then we obtain the stationary solution (44), where
the mobility is arbitrary. Since μ = μ(|E|), in this case, we must restrict our solution to
an interval where E has a constant sign.

(2) When α = 2, c(x) = c0 e
∓ x

λ
√

2U0 and the mobility μ is constant, we have obtained solution
(24), where an arbitrary function u(t) appears. By choosing a suitable u(t) in (24), we can
have E > 0 for any x, t; this happens, for instance, when u(t) = 1 − tanh(t) > 0, c0 > 0.

In another way, if we take u(t) periodic then the solution (24) is periodic in time.

4.2. Stationary solutions

We have found some interesting stationary solutions.

(1) For m = 1, the solutions (47) reduce to w = cosh−2(x + a1), E = tanh(x + a1); these
functions are stationary and have soliton and kink shape, respectively. In figure 1(a)
and 1(b) we plot these two functions for a1 = 0; it is clear that E > 0 for x > 0. In
figure 1(c) we have also shown the Wadati solution w given by (50). This can be
considered as a two-soliton-like bound state.

(2) When the mobility is arbitrary, c = c0 and α = 2, we have found the stationary solution
(44). With the mobility arbitrary but in the isothermal case (α = 1), we obtained the
stationary solution (40) in the case c(x) = cos2(x + a1) + 2λ2U0 cos−2(x + a1).

4.3. Traveling waves

When the doping profile is constant, we have obtained several classes of traveling-wave
solutions.

(1) When α is arbitrary, the functions w and E given in solution (61) are sinusoidal waves
and the functions given in solution (63) are kinks. We observe that in this last case the
electric field is certainly positive when x + a1t > 0. In figure 2(a) we have plotted the
trigonometric solution w = sin( x+a1t

4λ2 ) given in (61) (with λ = 1√
2
, c0 = 1

2 and a1 = 2).
In figure 2(b) the kink function w given in (63) (with c0 = 1 and a1 = 2) is plotted.

(2) When μ = a1/E, α = 2, we have obtained the classes of solutions (65) and (66), with
parameter m. In both cases the function w is a Jacobi elliptic function and E is an elliptic
integral function. In figure 3 we have plotted the functions w and E given in (65) for
m = 0.999, c0 = 2, a1 = 2, H0 = 0.0188, U0 = 0.02 and λ = 1. Let us observe
that w is a squared traveling wave and E is a ‘stair function’, a bound state with infinity
kinks. The cnoidal solution w in (66) is real for c0 > 0 with m < 0 or m > 1 and has a
sinusoidal or reciprocal sinusoidal shape, respectively.
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-5

0

5

10

X
-2

-1

0

1

2

t

-0.5
-0.25

0
0.25
0.5

w

5

0

5X

-4
-2

0
2

4
x

-2

-1

0

1

2

t

-1
-0.5

0
0.5
1

w

-4
-2

0
2

4
x

(a) (b) 

Figure 2. Representation of the functions w given by (61) (a) and (63) (b), for λ = 1/
√

2, a1 = 2,

and c0 = 1/2 (a) and c0 = 1 (b).
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Figure 3. Representation of the elliptic traveling wave solutions w and E in (65) with m = 0.999,

c0 = 2, a1 = 2, H0 = 0.0188, U0 = 0.02 and λ = 1.
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Figure 4. Representation of the soliton–antisoliton (a) and kink–antikink (b) structures that
correspond to solution (67), a1 = 2, c0 = 1, λ = 1, m = 1. In the graphic (c) we plot the
function w that correspond to m = 0.9 and gives a net of dromions–antidromions from (67).

(3) The functions w, E given in solution (67) are Jacobi elliptic functions, where E � 0,

for x, t ∈ R. In figure 4(a), 4(b) we have plotted the functions w and E for
a1 = 2, c0 = 1, λ = 1, m = 1. We can observe that w leads to a soliton–antisoliton
bound state localized with respect to

√
c0 = 1 and E leads to a kink–antikink structure.
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Figure 5. Representation of the 2-hump compacton w, and its related function E, that correspond
to solution (68)–(69), k = 2, A = 0.2, γ = 2 and λ = 3.

These solutions only transport energy. When m = 0.9, the corresponding w leads to a
periodic net of dromions–antidromions, that is represented in figure 4(c).

(4) One of the most interesting solutions we have found is the k-hump compacton (68).
Although solitons are exponentially localized, they have infinite tails that may interact
for an infinite time with other solitons. They may be inadequate with the extremely small
spatial scales that are used in quantum models. For these models, it is natural to search
soliton-like solutions with a finite span, i.e. compactons. Consider a single compacton
wave along a nanotube whose wavelength is the same as the diameter of the nanotube.
Since almost no energy is lost this can lead to a very fast flow in the nanotube.

The functions w, E that correspond to (68), (69) are plotted in figure 5, with
k = 2, A = 0.2, γ = 2 and λ = 3. Let us observe that the 2-compacton w leads to
a bound state of two humps and E leads to an unbounded travel structure.

5. Conclusions

For the quantum drift–diffusion equation, we have found several new families of solutions that
have not been considered before. To obtain the first reductions we have used the nonclassical
method of symmetries. A qualitative analysis of some of these families of solutions has also
been made. Several classes of coherent structures are displayed by some of the solutions:
kinks, periodic nets of dromions–antidromions, solitons–antisolitons bound states, kink–
antikink structures, etc. We have shown that the system admits a wide class of solutions
w,E where w is a compacton.
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[6] Hänsch W 1991 The Drift–Diffusion Equation and Its Applications in MOSFET Modeling (Wien: Springer)
[7] Jerome J W 1996 Analysis of Charge Transport (Berlin: Springer)
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